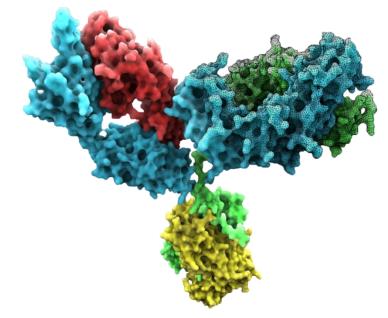


Anti-idiotypic Antibody Development

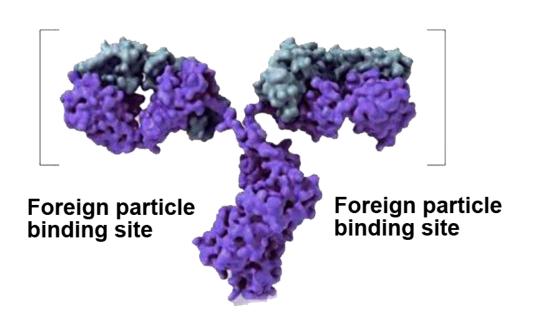

www.creative-biolabs.com

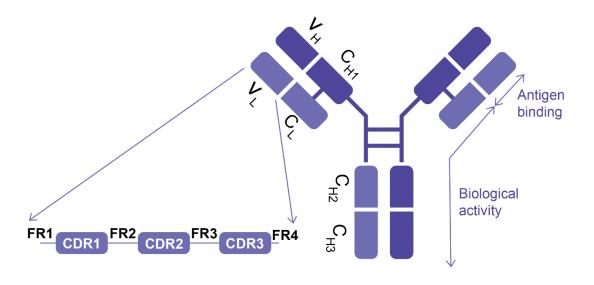
About Us "Creative Biolabs is committed to providing highly customized comprehensive solutions with the best quality to advance our global clients' projects."

Creative Biolabs is the leading custom service provider that has extensive experience in various antibody production and engineering fields. Our service portfolio includes mouse and rat monoclonal antibody production using hybridoma technology, human, monkey, rabbit, chicken, dog, llama and camel monoclonal antibody production using various antibody library technologies (including phage display, bacterial display and yeast display). We are also professional in conducting in depth antibody humanization and affinity maturation using phage display and DNA mutagenesis approaches.

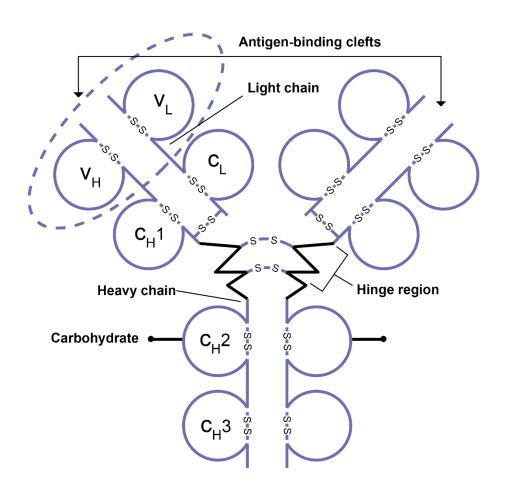
We also have rich experiences in anti-Idiotypic antibody production. With our well-established antibody development platform, we can customize anti-ID antibodies according to your project requirements, such as PK assay and ADA assay.

Contents


- O1 Introduction of Anti-idiotypic Antibody
- Technology Platforms of 02 Anti-idiotypic Antibody Development
- O3 Applications of Anti-idiotypic Antibody
- Anti-idiotype Antibody

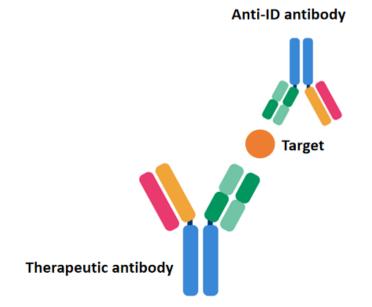

 O4 Development and Difficulty

 Analysis
- O5 Anti-idiotype Antibody Case Study


PART 01 Introduction of Anti-idiotypic Antibody

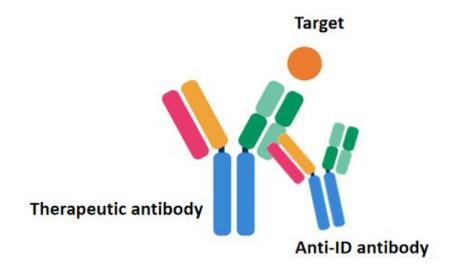
Antibody Structure Analysis

Anti-idiotypic Antibody

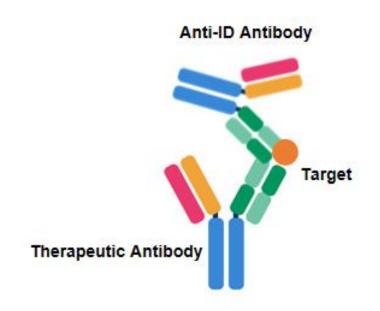

Idiotype:

the specific combination of idiotopes present within an antibody's complement determining regions (CDRs). A single idiotope is a specific region within an antibody's Fv region which binds to the paratope (antigenic epitope binding site) of a different antibody.

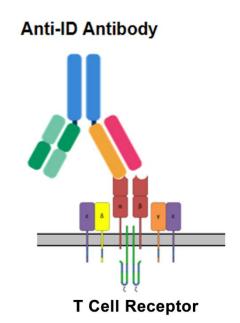
Anti-idiotype antibody:


an anti-idiotypic (Anti-ID) antibody binds to the idiotype of another antibody, usually an antibody drug.

Types of Anti-idiotypic Antibody


- Paratope specific
- Inhibit antigen binding
- Neutralizing original antibodies
- Antigen mimicry effects

Type 2. Anti-ID Antibody Detects **Total Antibody**


- Non-paratopic epitope
- Detect free, partially bound, fully bound antibodies
- Non-inhibitory to antigen binding

Types of Anti-idiotypic Antibody

Type 3. Anti-ID Antibody Detects **Bound Antibody Exclusively**

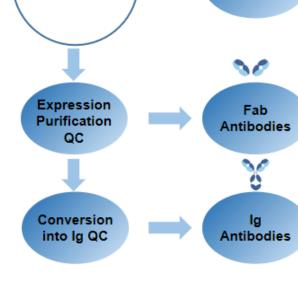
- Partially paratopic specific/antibodyantigen complex specific
- Detect partially bound, fully bound antibodies
- Non-inhibitory to antigen binding

Type 4: Anti-ID Antibody Detects **T Cell Receptor**

- TCR extracellular domain specific
- Immune modulation potential

PART 02 Technology Platforms of Antiidiotypic Antibody Development

Immunized Antibody Library Technology


This is the best approach that can raise a large number of high-affinity anti-ID antibodies. Target antibody in the forms of whole IgG, scFv, Fab, F(ab')2, VHH or peptides designed according to the sequences of the variable domains is utilized to immunize animals.

Target Antibody Phage Display 3-4 rounds

Features:

- Diverse antibody repertoires
- Antigen-specific libraries
- Affinity matured
- Counter selections available
- Guided selection to get different types of anti-ID antibodies

Screening

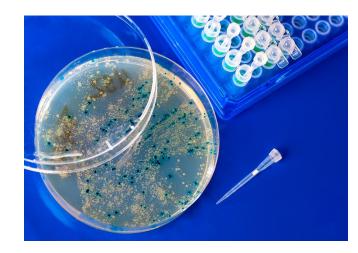
Sequencing

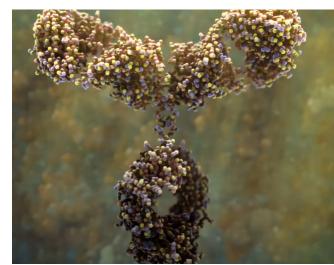
Native Antibody Discovery

Creative Biolabs has developed the unique Native® Antibody
Discovery Platform to discover native monoclonal antibodies using
antigen-specific B lymphocyte cytometry technology plus antibody
gene cloning from single cells. Both plasma and memory B cell
sorting methods are employed.

Features:

- Native paired heavy chain and light chain
- High affinity due to in vivo affinity maturation
- High selectivity and stability in vivo
- Large pool of antibody candidates




Premade Phage Displayed Library Screening

Screening our premade phage display antibody libraries can be a timesaving approach to generating anti-idiotype antibodies that recognize the target antibodies in native conformation.

If isotype matching control antibodies are available, we can use them to deplete/block the binders that target the constant regions of the target antibody.

- Naive libraries: constructed from non-immunized host (human, mouse, rat, rabbit, llama, camel, shark, etc.)
- **Synthetic libraries**: constructed from antibody framework with randomized CDR regions.

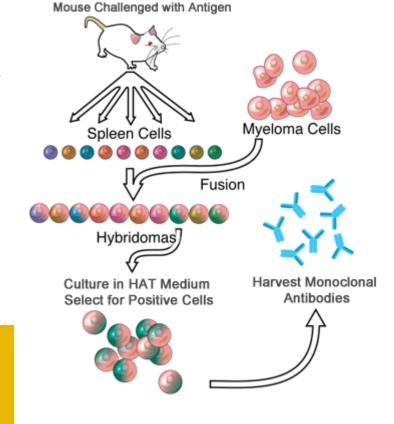
Premade Phage Displayed Library Screening

Features

- Plentiful library resources with large capacity and diversity, which greatly facilitates the discovery of ideal binders
- Particularly suitable for human native antigens, antigens that are difficult to immunize, or antigens that cannot elicit potent immune response in other animals
- Highly efficient and robust
- Various screening targets: proteins/peptides, small molecules, living whole cells, membrane protein reconstitution formats, etc.
- Guided selection to get different types of anti-ID antibodies

Premade Phage Displayed Library Screening

ibraries	Display Technology	Library Format	Specise	Library Size
HuScL-2	Phage Display	Semi-synthetic scFv	Human	1.42×10 ⁹
HuScL-6	Phage Display	Naïve scFv	Human	1.0×10 ¹¹
HuScL-7	Phage Display	Naïve scFv	Human	1.1×10 ¹⁰
HuScL-2S	Phage Display	Semi-synthetic scFv	Human	2.36×10 ¹⁰
HuFabL-4	Phage Display	Naïve Fab	Human	1.9×10 ¹⁰
HuFabL-5	Phage Display	Naïve Fab	Human	1.1×10 ¹⁰
HuFabssL-1	Phage Display	Naïve & synthetic Fab	Human	1.8×10 ¹⁰
MuScL-1	Phage Display	Naïve scFv	Mouse	8.0×10 ⁸
MuScL-2	Phage Display	Naïve scFv	Mouse	5.3×10 ¹⁰
MuFabL-1	Phage Display	Naïve Fab	Mouse	6.0×10°
RaFabL-1	Phage Display	Naïve Fab	Rabbit	7.5×10 ⁹
RaFabL-2	Phage Display	Naïve Fab	Rabbit	1.2×10 ¹⁰
Chicken-ScL-1	Phage Display	Naïve scFv	Chicken	1.2×10 ⁹
CaVHHL-1	Phage Display	Naïve VHH	Camel	1.5×10 ⁹
CaVHHL-3	Phage Display	Naïve VHH	Camel	3.0×10°
CaVHHL-4	Phage Display	Naïve VHH	Camel	2.63×10 ¹⁰
LlaVHHL-1	Phage Display	Naïve VHH	Llama	2.0×10°
LlaVHHSS-1	Phage Display	Synthetic VHH	Llama	1.0×10 ¹¹

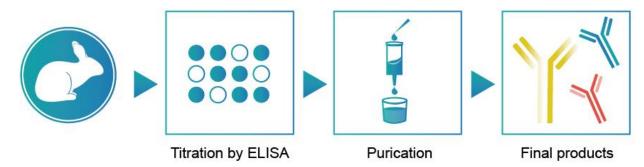

Hybridoma

And More!

To raise hybridoma clones in rats or mice using the target antibody as the immunogen, and to subsequently use isotype matching control antibodies to do counter-selection is another classic strategy to produce high specific, high affinity anti-idiotypic antibodies. We usually cut the target antibody into Fab to be used as immunogen. Here, a typical mistake is to take the whole antibody to raise hybridomas; this way, the Fc part of the whole antibody will dominate the immune response.

Currently we can provide first-class custom antibody & hybridoma service using a variety of species:

Copyright © 2022 Creative Biolabs, All Rights Reserved


Rabbit Polyclonal Antibody Platform

Creative Biolabs offers rabbit anti-idiotypic antibody production service. We have established a world-leading platform for rabbit anti-idiotypic antibody development. Rabbit anti-ID polyclonal antibody is usually used to detect total antibodies and it can be produced in a short time.

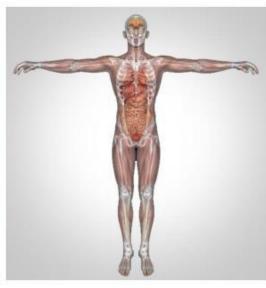
Advantages of rabbit anti-idiotypic antibody:

- Can simulate real conditions in blood samples
- The preparation cycle is relatively short
- Low cost

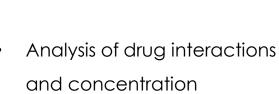


PART 03 Applications of Anti-idiotypic Antibody

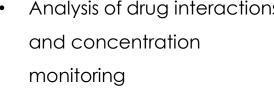
Antibody Drug Development


Pharmacokinetics, PK
Detection reagent

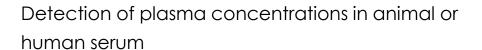
Anti-drug-antibody assay, ADA Positive control or test standard



Pharmacokinetic (PK) Assay

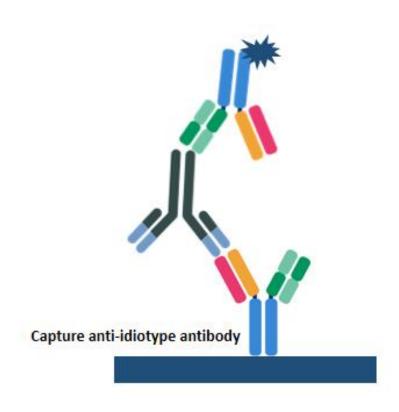


Preclinical initial dose


setting

Clinical safety and efficacy evaluation

Drug dosage improvement


Drug use guidence


Analyze the absorption, distribution, metabolism and elimination of drugs in animals or humans

Drug Concentration Detection

Anti-idiotype capture ELISA

Competitive anti-ID antibodies-Detection of free antibody drugs and partially bound antibody drugs

Non-competitive anti-ID antibodies-Detection of total antibody drugs

Immunogenicity Evaluation

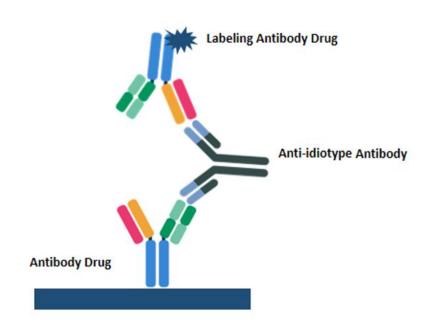
Binding

- Bind with drugs
- Interfere with PK and TK drug testings
- Cause hypersensitivity reactions

>

Sustaining/Clearing

- Form complexes with drugs, prolong/shorten drug half-life
- Extend/reduce
 drug exposure time

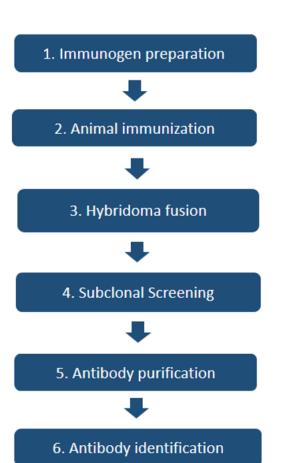

Neutralizing

- Form complexes
 with drugs,
 preventing drugs
 target-target
 binding
- Decreased efficacy

Common detection methods for immunogenicity evaluation:

- Bridging ELISA
- Radioimmunoprecipitation (RIPA)
- Surface Plasmon Resonance (SPR)
- Electrochemiluminescence Detection (ECL)

Principles for establishing immunogenicity testing methods:


- High sensitivity (clinical 100 ng/mL, preclinical 250-500 ng/mL)
- Can cover all subtypes of ADA antibody detection (IgG, IgM, IgE, etc.)
- Anti-ID antibody is used as positive control antibody to establish detection
 methodology validation
- Set up negative individual controls (unmedicated individuals, healthy individuals/target disease groups)

PART 04 Anti-idiotype Antibody Development and Difficulty Analysis

Choice of Anti-ID Antibody Type: Monoclonal or Polyclonal Antibodies?

Item	Anti-ID Monoclonal Antibody	Anti-ID Polyclonal Antibody
Application	PK detection	Immunogenicity evaluation
Timeline	12~29 weeks	11~17 weeks
Advantages	Single epitopeHigh specificityHigh batch-to-batch stability	 Can simulate real conditions in blood samples Relatively short preparation cycle Low cost
Disadvantages	 Long preparation cycle Relatively high cost Does not reflect the true condition of blood samples 	Low specificityLow batch-to-batch stability

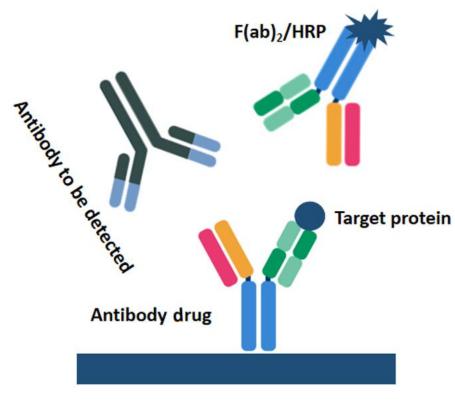
Anti-ID Monoclonal Antibody Development Process and Difficulty Analysis

Main difficulties:

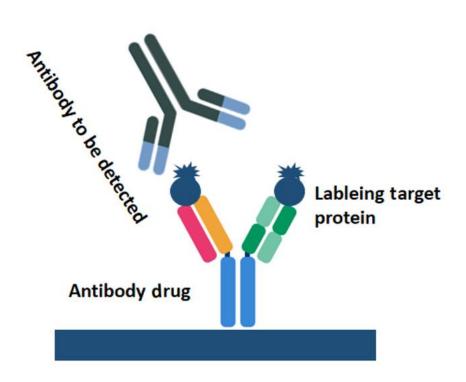
- How to choose an immunogen;
- How to improve the immune response of the CDR region;
- How to improve the success rate of anti-ID antibody fusion;
- Anti-ID antibody detection method;
- How to distinguish different types of anti-ID antibodies in the early stage of screening;
- Protocol for the identification of purified antibodies.

Anti-ID Monoclonal Antibody Development Process and Difficulty Analysis

1. Immunogen selection - IgG, $F(ab)_2$

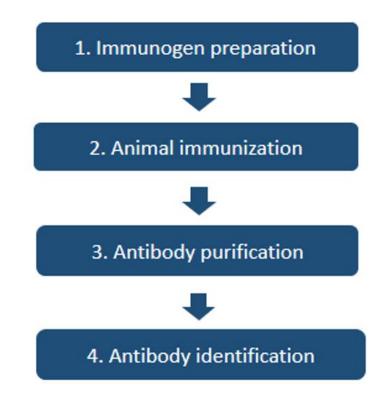

Immunogen	IgG	F(ab) ₂
Cross-react with isotype IgG	++	+
Cost	+	++
Recognize antibody drugs	++	+
Probability of obtaining both types of antibodies	+	++

2. Improve immune response for CDR region


- Use the digested F(ab)₂ for immunization—reduce the proportion of non-specific antibodies caused by the Fc fragment;
- Try a variety of immune adjuvants—Freund's adjuvant, aluminum adjuvant, QS21, titermax, etc.;
- Adjust the immune cycle;
- Try macromolecular protein conjugation postimmunization (KLH, etc.)

Anti-ID Monoclonal Antibody Development Process and Difficulty Analysis

3. Anti-ID antibody typing detection method



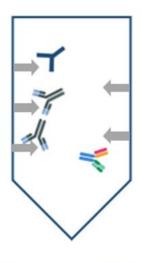
Competitive ELISA Assay-1

Competitive ELISA Assay-2

Anti-ID Polyclonal Antibody Development Process and Difficulty Analysis

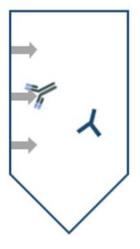
Main difficulties:

- How to choose the immunogen of polyclonal antibody;
- Anti-ID polyclonal antibody purification scheme;
- How to choose the purification method according to the intended application;



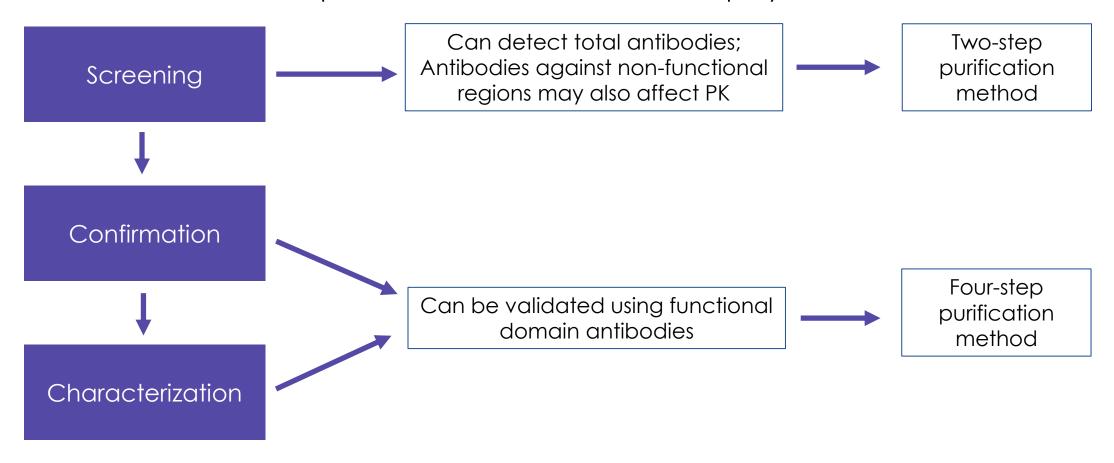
Anti-ID Polyclonal Antibody Development Process and Difficulty Analysis

1. Anti-ID polyclonal antibody purification


A. Protein A capture total antibody

B. Immunogen affinity purification

C. Total human IgG adsorption

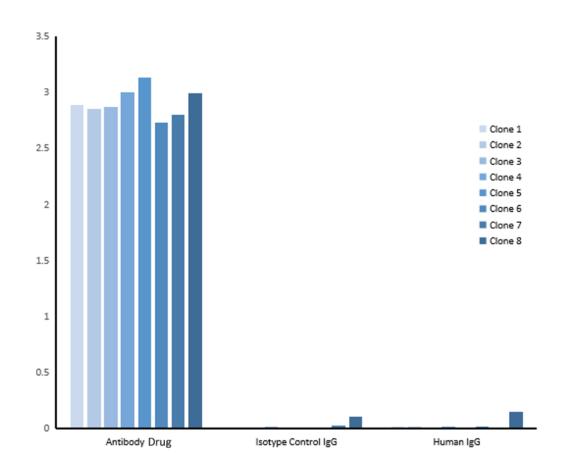

D. Human isotype IgG adsorption

Two-step purification method

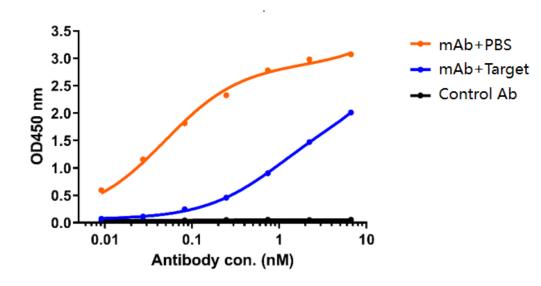
Four-step purification method

Anti-ID Polyclonal Antibody Development Process and Difficulty Analysis

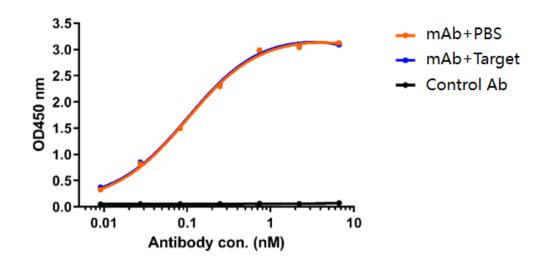
2. Selection of different purification methods for anti-ID polyclonal antibodies



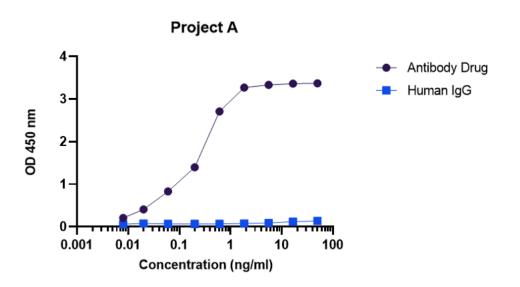
PART 05 **Anti-idiotype Antibody** Case Study

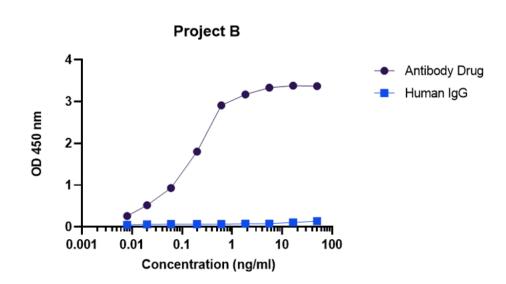

Example 1:

Anti-ID monoclonal antibody has no cross reaction with isotype human IgG and total human IgG

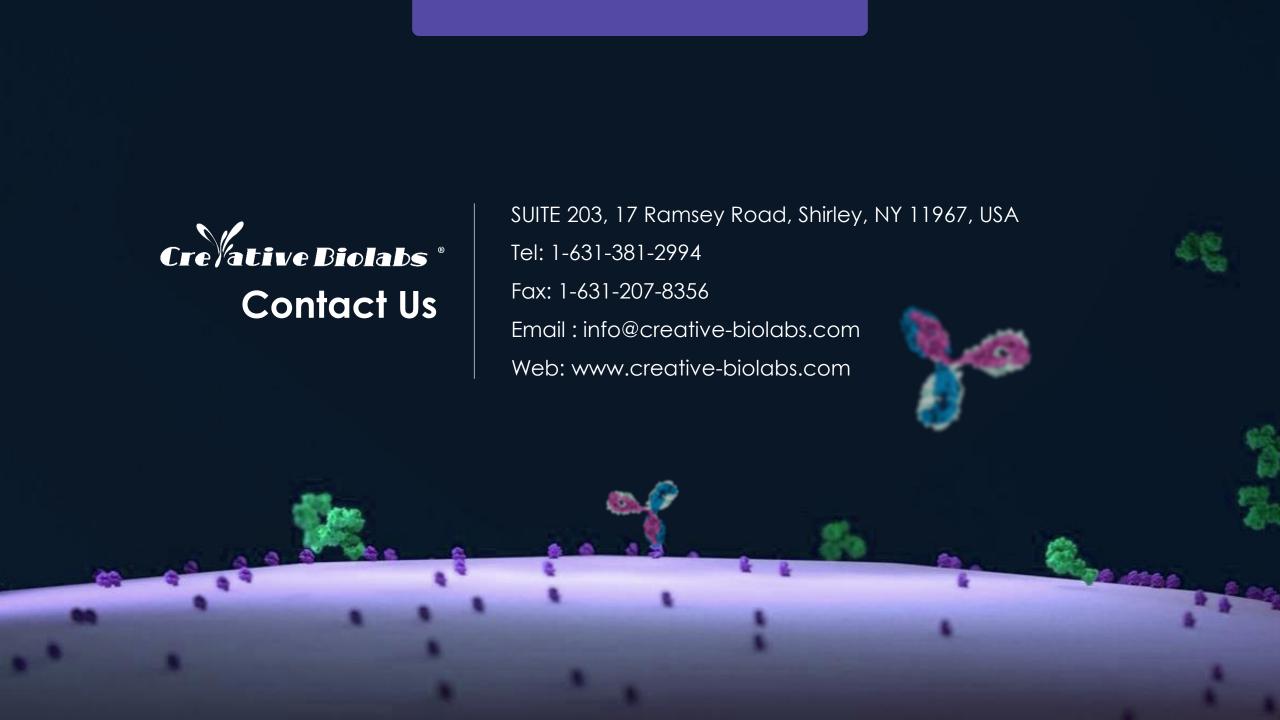


Example 2: Competition ELISA of anti-ID monoclonal antibody




Competitive anti-ID antibodies

Non-competitive anti-ID antibodies


Example 3: Anti-ID polyclonal antibody—good specificity, little cross-reactivity with human IgG

Anti-ID Antibody Development Services

Services	Delivery	Lead Time
Anti-idiotype rabbit polyclonal antibody preparation service	Purified antibody; Antibody QC report	3~4 months
Anti-idiotype mouse monoclonal antibody preparation service	Compete and/or non-compete purified antibodies; Antibody QC report; Hybridoma cell line	4~6 months
Phage displayed library screening of anti-idiotype antibody	Purified antibody; Plasmid; Strain; Antibody sequences, Antibody QC report	3~6 months
Development of immunogenicity detection kits	Kit; Manual; R&D report	3~4 months
Development of PK detection kits	Kit; Manual; R&D report	3~4 months

